# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## (E)-(2,4-Dichlorobenzylidene)amino cyclopropanecarboxylate

### Mei-Yi Wang\* and Ya Zhang

College of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan 750021, People's Republic of China Correspondence e-mail: aseonliu@gmail.com

Received 10 April 2012; accepted 23 April 2012

Key indicators: single-crystal X-ray study; T = 113 K; mean  $\sigma(C-C) = 0.002$  Å; R factor = 0.027; wR factor = 0.076; data-to-parameter ratio = 13.4.

In the title compound  $C_{11}H_9Cl_2NO_2$ , the dihedral angle between the benzene and cyclopropane ring planes is 89.95 (13)°. The carbonyl-oxime grouping is almost coplanar with the benzene ring [dihedral angle =  $4.08 (6)^{\circ}$ ]. In the crystal, molecules are linked by  $C-H \cdots O$  interactions into [100] chains.

## **Related literature**

For further synthetic details, see: Liu et al. (2011b, 2012). For related structures, see: Liu & Liu (2011) Liu et al. (2011d). For the biological activity of related compounds, see: Liu et al. (2010, 2011a,c).



## **Experimental**

Crvstal data

| $C_{11}H_9Cl_2NO_2$            | $\gamma = 102.70 \ (3)^{\circ}$           |
|--------------------------------|-------------------------------------------|
| $M_r = 258.09$                 | $V = 556.71 (19) \text{ Å}^3$             |
| Triclinic, $P\overline{1}$     | Z = 2                                     |
| a = 6.4381 (13)  Å             | Mo $K\alpha$ radiation                    |
| b = 7.6030 (15) Å              | $\mu = 0.57 \text{ mm}^{-1}$              |
| c = 11.956 (2) Å               | T = 113  K                                |
| $\alpha = 94.90 \ (3)^{\circ}$ | $0.24 \times 0.20 \times 0.10 \text{ mm}$ |
| $\beta = 100.42 \ (3)^{\circ}$ |                                           |

#### Data collection

Rigaku Saturn CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) $T_{\min} = 0.876, T_{\max} = 0.946$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.027$ | 145 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.076$               | H-atom parameters constrained                              |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$  |
| 1937 reflections                | $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ |

3737 measured reflections

 $R_{\rm int} = 0.030$ 

1937 independent reflections

1563 reflections with  $I > 2\sigma(I)$ 

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| $C1-H1B\cdotsO1^{i}$        | 0.97 | 2.57                    | 3.5008 (19)  | 161                                  |

Symmetry code: (i) x - 1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This research work was supported by the Research Program of Beifang University of Nationalities (2010Y047) and the Key Laboratory of Chemical Technology of the SEAC (2010SY16).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6735).

#### References

- Liu, X.-H., Chen, P.-Q., Wang, B.-L., Dong, W.-L., Li, Y.-H., Xie, X.-Q. & Li, Z.-M. (2010). Chem. Biol. Drug Des. 75, 228-232.
- Liu, X. H., Jian, Q. W. & Tan, C. X. (2011a). Asian J. Chem. 23, 4064-4066.
- Liu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.
- Liu, X.-H., Pan, L., Tan, C.-X., Weng, J.-Q., Wang, B.-L. & Li, Z.-M. (2011b). Pest. Biochem. Physiol. 101, 143-147.
- Liu, X. H., Tan, C. X. & Jian, Q. W. (2011c). Phosphorus Sulfur Silicon, 186, 552-557
- Liu, X.-H., Tan, C.-X., Weng, J.-Q. & Liu, H.-J. (2012). Acta Cryst. E68, 0493. Liu, H.-J., Weng, J.-Q., Tan, C.-X. & Liu, X.-H. (2011d). Acta Cryst. E67, o1940. Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supplementary materials

Acta Cryst. (2012). E68, o1594 [doi:10.1107/S1600536812018016]

## (E)-(2,4-Dichlorobenzylidene)amino cyclopropanecarboxylate

## Mei-Yi Wang and Ya Zhang

## Experimental

Dropwised the cyclopropanecarbonyl chloride to 2,4-dichlorobenzaldehyde oxime (7.50 mmol in 25 ml THF) and 7.5 mmol Et3N, then vigorously stirred at ambient temperature for overnight. The corresponding product precipitated immediately. Compound was dissolved in hot alcohol and the resulting solution was allowed to stand in air at room temperature to give colourless blocks of the title compound.

## Refinement

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(methyl C)$ .

## **Computing details**

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear* (Rigaku/MSC, 2005); data reduction: *CrystalClear* (Rigaku/MSC, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008.



## Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

## (E)-(2,4-Dichlorobenzylidene)amino cyclopropanecarboxylate

### Crystal data

 $\begin{array}{l} C_{11}H_9Cl_2NO_2\\ M_r = 258.09\\ Triclinic, P\overline{1}\\ a = 6.4381~(13)~\text{\AA}\\ b = 7.6030~(15)~\text{\AA}\\ c = 11.956~(2)~\text{\AA}\\ a = 94.90~(3)^\circ\\ \beta = 100.42~(3)^\circ\\ \gamma = 102.70~(3)^\circ\\ V = 556.71~(19)~\text{\AA}^3 \end{array}$ 

#### Data collection

| Rigaku Saturn CCD                      | 3737 measured reflections                                           |
|----------------------------------------|---------------------------------------------------------------------|
| diffractometer                         | 1937 independent reflections                                        |
| Radiation source: rotating anode       | 1563 reflections with $I > 2\sigma(I)$                              |
| Confocal monochromator                 | $R_{\rm int} = 0.030$                                               |
| $\omega$ scans                         | $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$ |
| Absorption correction: multi-scan      | $h = -7 \rightarrow 7$                                              |
| (CrystalClear; Rigaku/MSC, 2005)       | $k = -9 \rightarrow 6$                                              |
| $T_{\min} = 0.876, \ T_{\max} = 0.946$ | $l = -14 \rightarrow 14$                                            |
|                                        |                                                                     |

## Refinement

| Secondary atom site location: difference Fourier           |
|------------------------------------------------------------|
| map                                                        |
| Hydrogen site location: inferred from                      |
| neighbouring sites                                         |
| H-atom parameters constrained                              |
| $w = 1/[\sigma^2(F_o^2) + (0.0407P)^2]$                    |
| where $P = (F_o^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$    |
| $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ |
|                                                            |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 264

 $\theta = 1.8 - 27.9^{\circ}$ 

 $\mu = 0.57 \text{ mm}^{-1}$ 

Block, coloress

 $0.24 \times 0.20 \times 0.10$  mm

T = 113 K

 $D_{\rm x} = 1.540 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 1887 reflections

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|-------------|-----------------------------|
| C11 | 0.32359 (6)  | 0.70035 (5)  | 0.47089 (3) | 0.02317 (14)                |
| Cl2 | 1.15092 (6)  | 0.98054 (6)  | 0.68823 (4) | 0.02531 (14)                |
| 01  | 0.08882 (17) | 0.30779 (16) | 0.94813 (9) | 0.0263 (3)                  |
| O2  | 0.00692 (16) | 0.37138 (15) | 0.76492 (9) | 0.0186 (3)                  |
|     |              |              |             |                             |

| N1  | 0.2306 (2)  | 0.46280 (18) | 0.78101 (11) | 0.0202 (3) |
|-----|-------------|--------------|--------------|------------|
| C1  | -0.3868 (2) | 0.2548 (2)   | 0.94150 (14) | 0.0217 (4) |
| H1A | -0.2971     | 0.3293       | 1.0106       | 0.026*     |
| H1B | -0.5348     | 0.2689       | 0.9234       | 0.026*     |
| C2  | -0.3504 (3) | 0.0724 (2)   | 0.91336 (14) | 0.0208 (4) |
| H2A | -0.4764     | -0.0249      | 0.8783       | 0.025*     |
| H2B | -0.2388     | 0.0354       | 0.9655       | 0.025*     |
| C3  | -0.2777 (2) | 0.2198 (2)   | 0.84222 (14) | 0.0198 (4) |
| H3  | -0.3629     | 0.2113       | 0.7644       | 0.024*     |
| C4  | -0.0426 (2) | 0.3004 (2)   | 0.86199 (13) | 0.0177 (4) |
| C5  | 0.2637 (2)  | 0.5304 (2)   | 0.69054 (14) | 0.0177 (4) |
| Н5  | 0.1511      | 0.5129       | 0.6268       | 0.021*     |
| C6  | 0.4823 (2)  | 0.6365 (2)   | 0.68810 (14) | 0.0164 (4) |
| C7  | 0.5265 (3)  | 0.7218 (2)   | 0.59348 (13) | 0.0168 (4) |
| C8  | 0.7305 (2)  | 0.8271 (2)   | 0.59131 (13) | 0.0188 (4) |
| H8  | 0.7566      | 0.8836       | 0.5275       | 0.023*     |
| С9  | 0.8947 (2)  | 0.8453 (2)   | 0.68750 (14) | 0.0187 (4) |
| C10 | 0.8595 (3)  | 0.7612 (2)   | 0.78232 (14) | 0.0196 (4) |
| H10 | 0.9725      | 0.7736       | 0.8453       | 0.024*     |
| C11 | 0.6539 (2)  | 0.6579 (2)   | 0.78256 (14) | 0.0177 (4) |
| H11 | 0.6293      | 0.6016       | 0.8466       | 0.021*     |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$     |
|-----|------------|------------|-------------|---------------|--------------|--------------|
| Cl1 | 0.0227 (2) | 0.0314 (3) | 0.0143 (2)  | 0.00420 (18)  | 0.00140 (17) | 0.00786 (18) |
| Cl2 | 0.0192 (2) | 0.0275 (2) | 0.0273 (3)  | -0.00120 (17) | 0.00716 (17) | 0.00581 (18) |
| 01  | 0.0182 (6) | 0.0425 (8) | 0.0166 (7)  | 0.0021 (5)    | 0.0021 (5)   | 0.0121 (6)   |
| O2  | 0.0123 (5) | 0.0267 (6) | 0.0165 (6)  | 0.0012 (5)    | 0.0038 (4)   | 0.0082 (5)   |
| N1  | 0.0117 (6) | 0.0267 (8) | 0.0213 (8)  | 0.0005 (6)    | 0.0039 (5)   | 0.0072 (6)   |
| C1  | 0.0179 (8) | 0.0266 (9) | 0.0221 (10) | 0.0051 (7)    | 0.0073 (7)   | 0.0061 (7)   |
| C2  | 0.0191 (8) | 0.0226 (9) | 0.0198 (9)  | 0.0004 (7)    | 0.0059 (7)   | 0.0054 (7)   |
| C3  | 0.0151 (8) | 0.0264 (9) | 0.0160 (9)  | 0.0002 (7)    | 0.0027 (7)   | 0.0059 (7)   |
| C4  | 0.0187 (8) | 0.0201 (8) | 0.0162 (9)  | 0.0045 (7)    | 0.0070 (7)   | 0.0059 (7)   |
| C5  | 0.0178 (8) | 0.0218 (9) | 0.0145 (9)  | 0.0048 (7)    | 0.0041 (7)   | 0.0056 (7)   |
| C6  | 0.0184 (8) | 0.0158 (8) | 0.0162 (9)  | 0.0042 (6)    | 0.0061 (7)   | 0.0031 (6)   |
| C7  | 0.0185 (8) | 0.0193 (8) | 0.0134 (9)  | 0.0070 (6)    | 0.0019 (6)   | 0.0024 (6)   |
| C8  | 0.0244 (9) | 0.0189 (9) | 0.0165 (10) | 0.0057 (7)    | 0.0100 (7)   | 0.0071 (7)   |
| C9  | 0.0181 (8) | 0.0170 (8) | 0.0223 (9)  | 0.0038 (7)    | 0.0082 (7)   | 0.0024 (7)   |
| C10 | 0.0189 (8) | 0.0226 (9) | 0.0183 (9)  | 0.0077 (7)    | 0.0022 (7)   | 0.0040 (7)   |
| C11 | 0.0194 (8) | 0.0206 (9) | 0.0166 (9)  | 0.0079 (7)    | 0.0065 (7)   | 0.0073 (7)   |
|     |            |            |             |               |              |              |

Geometric parameters (Å, °)

| Cl1—C7 | 1.7477 (16) | C3—C4  | 1.470 (2) |  |
|--------|-------------|--------|-----------|--|
| Cl2—C9 | 1.7394 (16) | С3—Н3  | 0.9800    |  |
| O1—C4  | 1.1976 (18) | C5—C6  | 1.467 (2) |  |
| O2—C4  | 1.3800 (19) | С5—Н5  | 0.9300    |  |
| O2—N1  | 1.4253 (16) | С6—С7  | 1.394 (2) |  |
| N1—C5  | 1.269 (2)   | C6—C11 | 1.401 (2) |  |
|        |             |        |           |  |

| C1—C2                                        | 1.478 (2)    | С7—С8                     | 1.385 (2)                |
|----------------------------------------------|--------------|---------------------------|--------------------------|
| C1—C3                                        | 1.517 (2)    | C8—C9                     | 1.389 (2)                |
| C1—H1A                                       | 0.9700       | С8—Н8                     | 0.9300                   |
| C1—H1B                                       | 0.9700       | C9—C10                    | 1.378 (2)                |
| C2—C3                                        | 1.508 (2)    | C10—C11                   | 1.383 (2)                |
| C2—H2A                                       | 0.9700       | C10—H10                   | 0.9300                   |
| C2—H2B                                       | 0.9700       | C11—H11                   | 0.9300                   |
| C4 O2 N1                                     | 112 18 (11)  | $O_2 C_4 C_3$             | 109 31 (12)              |
| $C_{-}^{-}O_{-}^{-}N_{-}^{-}O_{-}^{-}$       | 109.05(12)   | N1 - C5 - C6              | 109.31(12)<br>118.94(14) |
| $C_2 = C_1 = C_3$                            | 60.45(11)    | N1_C5_H5                  | 120.5                    |
| $C_2 = C_1 = C_3$                            | 1177         | C6 C5 H5                  | 120.5                    |
| $C_2 = C_1 = H_1 \Lambda$                    | 117.7        | $C_{0} = C_{0} = C_{0}$   | 120.3<br>117.60(14)      |
| $C_2 = C_1 = H_1 R$                          | 117.7        | $C_{7} = C_{6} = C_{5}$   | 117.00(14)<br>121.71(14) |
| $C_2 = C_1 = H_1 B$                          | 117.7        | $C_{1} = C_{0} = C_{3}$   | 121.71(14)<br>120.60(15) |
|                                              | 11/./        | $C^{\text{R}}_{\text{C}}$ | 120.09(13)<br>122.27(14) |
| $\Pi A - C I - \Pi B$                        | (114.0)      | $C_{8} = C_{7} = C_{11}$  | 122.37(14)<br>116.74(12) |
| C1 = C2 = C3                                 | 01.08 (11)   | $C_{0} = C_{1} = C_{1}$   | 110.74(13)<br>120.80(12) |
| C1 - C2 - H2A                                | 1177         | $C_0 - C_1 - C_1$         | 120.89 (12)              |
| $C_3 = C_2 = H_2 A$                          | 1177         | $C_{1} = C_{2} = C_{2}$   | 117.79 (13)              |
| $C_1 = C_2 = H_2 B$                          | 1177         | $C = C = H \delta$        | 121.1                    |
| $C_3 - C_2 - \Pi_2 B$                        | 11/./        | $C_{9}$                   | 121.1                    |
| $H_2A = C_2 = H_2B$                          | 114.8        | C10 - C9 - C8             | 121.89 (15)              |
| C4 - C3 - C2                                 | 116.62 (14)  | C10 - C9 - C12            | 119.36 (12)              |
| C4 - C3 - C1                                 | 115.92 (13)  | $C_8 = C_9 = C_{12}$      | 118.75 (13)              |
| $C_2 = C_3 = C_1$                            | 58.47 (11)   |                           | 119.14 (14)              |
| C4 - C3 - H3                                 | 117.5        | C9—C10—H10                | 120.4                    |
| C2—C3—H3                                     | 117.5        | C11—C10—H10               | 120.4                    |
| CI = C3 = H3                                 | 117.5        | C10-C11-C6                | 121.20 (15)              |
| 01                                           | 123.97 (14)  | CIO—CII—HII               | 119.4                    |
| O1—C4—C3                                     | 126.72 (15)  | С6—С11—Н11                | 119.4                    |
| C4—O2—N1—C5                                  | -177.60 (13) | С5—С6—С7—С8               | 177.96 (16)              |
| C1—C2—C3—C4                                  | 105.44 (16)  | C11—C6—C7—Cl1             | 179.11 (13)              |
| C2-C1-C3-C4                                  | -106.64 (16) | C5—C6—C7—Cl1              | -2.0 (2)                 |
| N1-02-C4-01                                  | -3.1 (2)     | C6—C7—C8—C9               | 0.4 (3)                  |
| N1-02-C4-C3                                  | 176.04 (13)  | Cl1—C7—C8—C9              | -179.65 (12)             |
| C2—C3—C4—O1                                  | -25.6 (3)    | C7—C8—C9—C10              | 0.6 (3)                  |
| C1-C3-C4-O1                                  | 40.4 (2)     | C7—C8—C9—Cl2              | -178.69 (13)             |
| C2—C3—C4—O2                                  | 155.33 (15)  | C8—C9—C10—C11             | -1.1 (3)                 |
| C1—C3—C4—O2                                  | -138.66 (14) | Cl2—C9—C10—C11            | 178.24 (13)              |
| O2—N1—C5—C6                                  | 178.12 (13)  | C9—C10—C11—C6             | 0.5 (3)                  |
| N1—C5—C6—C7                                  | -176.72 (16) | C7C6C11C10                | 0.5 (2)                  |
| N1-C5-C6-C11                                 | 2.2 (3)      | C5-C6-C11-C10             | -178.44 (16)             |
| С11—С6—С7—С8                                 | -1.0 (3)     |                           |                          |
| Hydrogen-bond geometry $(\hat{\lambda}^{0})$ |              |                           |                          |

## *Hydrogen-bond geometry (Å, °)*

| D—H···A | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ |
|---------|-------------|--------------|--------------|
|         |             |              |              |

D—H···A

# supplementary materials

| C1—H1B····O1 <sup>i</sup> | 0.97 | 2.57 | 3.5008 (19) | 161 |  |
|---------------------------|------|------|-------------|-----|--|

Symmetry code: (i) x-1, y, z.